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Summary and Disclaimer

This is a study guide for the first exam for math 1522 at the University of New Mexico
(Calculus II). The exam covers chapter 6, as well as sections 7.1-7.4 of Stewart’s Calculus.
As such, this study guide is focused on that material. I assume that the student reading
this study guide is familiar with the material from a calculus 1 course, including implicit
differentiation. If a you feel that you need to review this material, you can send me an email,
or take a look at Paul’s Online Math notes:

https://tutorial.math.lamar.edu/

If you are not in my class, I cannot guarantee how much these notes will help you. With
that said, if your TA or instructor has shared these with you, then you will most likely get
some use out of them.

Methods and Techniques

We begin by reviewing the methods and techniques taught in the first month of the course.
We begin with invertibility of functions.

One-To-One Functions and the Horizontal Line Test

Let f be a function. Then f is called a one-to-one function if f(x1) ̸= f(x2) for any
two different points x1 and x2 in the domain of f . Written differently, the output of f
is unique for each input.
The horizontal line test is one way to show that a function is one-to-one. Draw the
graph, and show that no horizontal line hits the graph at more than one point. This
is often more useful for showing that a function is not one-to-one, since then you can
specify a line that hits the graph at more than one point.

Once we know about one-to-one functions, we can define an inverse function. We will do
this by showing how to find one.

Finding Inverse Functions

Let f be a one-to-one function. Then there is an inverse function f−1 which undoes
f . More specifically, if f(x) = y, then f−1(y) = x. To find f−1, we set

f(y) = x

and solve for y on its own.
The inverse of f has the important property that f(f−1)(x) = x.

Now that we know about inverse functions, we want to know how to find the derivative
of of the inverse. Fortunately, one can visualize the inverse of a one-to-one function f as
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flipping f over the line y = x. And when we flip the function over this line, the tangent line
flips too. This gives us the Inverse Function Theorem:

Inverse Function Theorem

If f is a differentiable one-to-one function and f(a) = b, then

(f−1)′(b) =
1

f ′(a)
.

That is, we can find the derivative of the inverse just by knowing the corresponding point
on the regular function, and the derivative of the regular function. This is useful for when
you need to find the derivative of a function, and you don’t know how to find the inverse
explicitly.

Now that we understand about inverse functions, we should try to understand exponential
functions, and their inverses – called logarithms.

Exponent and Logarithm Rules

If bx is an exponential function, then we let logb(x) denote its inverse. We denote
loge(x) as ln(x). Because these functions are inverses, when some sort of rule holds
for one, there is a similar rule that holds for the other. In this case, we have two main
rules for each:

Exponent Rules

Addition Rule: axay = ax+y

Multiplication Rule: (ax)y = axy

Logarithm Rules

Addition Rule: logb(xy) = logb(x) + logb(y)
Multiplication Rule: logb(x

y) = y logb(x)

Additionally, we have the change of base formula for logarithms, which is useful when
we need to take derivatives and integrals:

logb(a) =
ln(a)

ln(b)

It is worth noting that ln(a)
ln(b)

is not the same as ln(a
b
). This is a common mistake when

first learning logarithms, and should be avoided carefully.
Now that we understand the basics about logarithms and exponents, we would like to

understand how they work with calculus.
First, we will discuss their limits. And since the book doesn’t mention how logarithms

work in this case, you will only need to understand limits of exponents for the test.
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Limits of Exponents

To evaluate limits of the form
lim

x→±∞
Cx

where C is a non-negative number, we have to split this up on cases depending on the
size of C. This gives us:

lim
x→∞

Cx = 0 if 0 ≤ C < 1

lim
x→∞

Cx = 1 if C = 1

lim
x→∞

Cx = ∞ if C > 1

where the limit goes to positive infinity, and when the limit goes to negative infinity
we have

lim
x→−∞

Cx = ∞ if 0 < C < 1

lim
x→−∞

Cx = 1 if C = 1

lim
x→−∞

Cx = 0 if C > 1.

Next, we would like to be able to take the derivatives of logarithms and exponential
functions.

Derivatives of Exponential Functions and Logarithms

To find the derivatives of exponential functions, we only need to remember the two
rules

(logb(x))
′ =

1

x ln(b)
and (bx)′ = ln(b)bx.

If b = e, this gives us the special cases

(ln(x))′ =
1

x
and (ex)′ = ex.

And finally, for exponential functions and logarithms, we have the integrals.

Integrals of exponential functions and 1
x

Now that we know the derivatives of ln(x) and bx, we will mention the integral of bx

and the integral of 1
x
.∫

bx dx =
bx

ln(b)
+ C and

∫
1

x
dx = ln |x|+ C

We then want to know the derivatives of inverse trig functions. These are easiest to learn
just by memorizing them, but you can find them all by implicit differentiation and by using
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trigonometric identities.

Derivatives of Inverse Trigonometric Functions

The derivatives of inverse trigonometric functions can be found with the following
table:

f(x) f ′(x)

sin−1(x)
1√

1− x2

cos−1(x) − 1√
1− x2

tan−1(x)
1

1 + x2

sec−1(x)
1

x
√
x2 − 1

csc−1(x) − 1

x
√
x2 − 1

cot−1(x) − 1

1 + x2

It is also good to know about the hyperbolic trigonometric functions.

Hyperbolic Trigonometric Functions

There are two main hyperbolic trigonometric functions.

cosh(x) =
ex + e−x

2
and sinh(x) =

ex − e−x

2

From these, we get the hyperbolic trigonometric functions in their ”normal” way. For
instance, tanh(x) = sinh(x)

cosh(x)
. The standard derviatives have their hyperbolic forms:

f(x) f ′(x)

sinh(x) cosh(x)
cosh(x) sinh(x)

tanh(x) sech2(x)
sech(x) −sech(x) tanh(x)
csch(x) −csch(x) coth(x)

coth(x) −csch2(x)

Finally, we want to know L’Hopital’s Rule. This tells us how to find limits of two very
specific forms, namely limits which directly evaluate to be either 0

0
or ∞

∞ . Unfortunately, we
can’t use L’Hopital’s rule in other cases. However, it is still quite useful in these specialized
cases.
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L’Hopital’s Rule

To evaluate a limit

lim
x→a

f(x)

g(x)

Where the limit is of the form 0
0
or ∞

∞ , we can find the derivatives. In other words:

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)

This exam also deals with methods of integration. We assume that you are familiar with
u-substitution, but we try to write the exam so that only the new methods are tested. The
first of these is integration by parts, which is in the integral version of the product rule.

Integration by Parts

Since integrals undo derivatives, we want to find out what happens when we undo the
chain rule. This gives us integration by parts, which has the following form.∫

u dv = uv −
∫

v du.

To do this in practice, you pick u to be the thing in the integral that you don’t
know how to integrate, but that you do know how to differentiate, and you let dv be
everything else.

Integration by parts questions on quizzes and exams usually come in three varieties,
which we will discuss down in the worked examples section.

Our next integration technique is trigonometric integrals. For these, we need to have the
following trigonometric identities.

Useful Trigonometric Identities

First, we have the Pythagorean identity. It is called this because it comes from the
definition of sin and cos combined with the Pythagorean Theorem.

sin2(x) + cos2(x) = 1

Next, we have two formulas which come from rearranging the double angle identities.
They are called this because they tell us how cos(2x) relates to sin2(x) and cos2(x).

cos2(x) =
1 + cos(2x)

2

sin2(x) =
1− cos(2x)

2
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Now we can deal with trigonometric integrals. Trigonometric integrals are integrals
involving only trigonometric functions. We can evaluate these with the following general
strategy.

Trigonometric Integrals

We wish to evaluate integrals of the form∫
sinn(x) cosm(x) dx.

If n is odd, we can write this as∫
(1− cos2(x))

n−1
2 cosm(x) sin(x) dx

and substitute in u = cos(x) to solve. If m is odd, we can write the integral as∫
sinn(x)(1− sin2(x))

m−1
2 cos(x) dx

and set u = sin(x) to solve.
If m and n are both even, we use the double angle identities to change them both into
terms of cos(2x), and solve that integral.

Sometimes you get trigonometric integrals which aren’t entirely integer powers. For
instance, you might have

√
sin(θ) somewhere in the integral. For these, you want to choose

u to be the function which will be hardest to turn into another function. Here, that would
be sin(θ). We will work through one of these later.

Next, we want to be able to use our ability to solve trigonometric integrals in order to
solve other integrals that we couldn’t do previously. In this case, we want to do a clever kind
of substitution, called a trigonometric substitution.

Trigonometric Substitution

We would like to solve integrals containing an x2 + a2 term, x2 − a2 term, or a2 − x2

term, where a is some constant number (think, 1, 2, or even
√
3). We do the following

substitutions, and solve the resulting integral:

Equation Substitution
x2 + a2 x = a tan(θ)
x2 − a2 x = a sec(θ)
a2 − x2 x = a sin(θ)

Each of these substitutions has an associated triangle which allows us to switch out of
terms of θ at the end of our integration.

7



Worked Examples

We will now work through some examples.

Example: Evaluate
lim
x→∞

(sin(x) + 2.5)x

Since sin(x) is always between −1 and 1, we know that sin(x) + 2.5 is always between
1.5 and 3.5. So, we can evaluate this using our standard exponential limit rules to get
that

lim
x→∞

(sin(x) + 2.5)x = ∞.

We will now do an example with trigonometric functions in it.

Example: Find ∫
sec2(x)

1 + tan2(x)
dx

We begin by setting u = tan2(x). We do this because we know that sec2(x) = (tan(x))′,
and we hope that this will cause some problems to go away. Indeed, since du =
sec2(x) dx, we have that ∫

sec2(x)

1 + tan2(x)
dx =

∫
1

1 + u2
du.

And we know the value of this integral, since (tan−1(x))′ = 1
1+x2 .∫

sec2(x)

1 + tan2(x)
dx = tan−1(u) + C.

However, since u = tan(u), tan−1(u) = tan−1(tan(x)) = x. So,∫
sec2(x)

1 + tan2(x)
dx = x+ C.

Indeed, one may note that 1+tan2(x) = sec2(x). So this result is not surprising at all.

Next up is finding the derivative of an exponential function using the chain rule.

Example: Find the derivative of xtan(x).
We begin by rearranging in a clever way. We take the logarithm of this function, and
raise that logarithm to the power e. In doing so, we are composing a function with its
inverse, so we aren’t actually changing the value of the function at all.

xtan(x) = eln(x
tan(x)).
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Then, we use our logarithm rules. This gives us ln(xtan(x)) = ln(x) tan(x).

xtan(x) = etan(x) ln(x).

Then, we use the chain rule. This gives us that(
xtan(x)

)′
= etan(x) ln(x) (tan(x) ln(x))′ .

Finally, we use the product rule to get that

(
xtan(x)

)′
= etan(x) ln(x)

(
tan(x)

x
+ ln(x) sec2(x)

)
.

Next, we find the tangent line to a curve.

Example: Let f(x) = ex
2
+ x. Find the tangent line to f(x) at x = 0.

We begin by noting that f(0) = 1. After this, we need to find the derivative of f . The
chain rule and power rule give us that

f ′(x) = 2x · ex2

+ 1

So, f ′(0) = 1. Thus, the tangent line has slope 1. Finally, we use the point-slope form
of a line to get the equation of the line:

y − 1 = 1(x− 0)

or
y = x+ 1.

These examples are all well and good, but now we want to work on a harder example.
This one features logarithms, derivative rules, and the fundamental theorem of calculus for
good measure. This is by far the trickiest of the examples that we will work through here.

Example: Find the second derivative of∫ x

π+e

ln(x)ex + 2x dx.

By the fundamental theorem of calculus, the first derivative is just

ln(x)ex + 2x.

So, we only actually need to find the derivative of this function. And we know that
(2x)′ = ln(2)2x. So, the product rule gives us the other half:
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(ln(x)ex + 2x)′ =
1

x
ex + ex ln(x) + ln(2)2x.

Which is to say, (∫ x

π+e

ln(x)ex + 2x dx

)′′

=
ex

x
+ ex ln(x) + ln(2)2x.

The next example will help us review one-sided limits.

Example: Find the value of

lim
x→0+

x

ln(x)

We notice that this puts us in the ∞
∞ case of a limit, so we can use L’Hopital’s rule.

This gives us that

lim
x→0+

x

ln(x)
= lim

x→0+

1
1
x

or,

lim
x→0+

x

ln(x)
= lim

x→0+
x = 0.

And now, for good measure, we will do one last example. This one is not particularly
hard, but is still good to have seen.

Example: Find the limit of
lim
x→∞

x−x.

Since x is increasing, the value of 1
x
is decreasing. However, this means that raising it

to a large power will only make it smaller. So,

lim
x→∞

x−x = 0.

We will now work through some examples, beginning with integration by parts. As
previously mentioned, on quizzes and tests, these questions come in three different varieties.
The first variety requires you to do integration by parts more than once. The second variety
requires you to do integration by parts multiple times in order to get the same integral back
again, and then to use algebra to solve for the integral. The final is integration by parts
where you let dv = dx, and let u be everything else.

We will work through one example of each of these, beginning with the first variety.
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Example: Evaluate ∫
x3ex dx

We evaluate this integral by letting u = x3 and dv = ex dx. Then v = ex and
du = 3x2 dx. So, ∫

x3ex dx = x3ex − 3

∫
x2ex dx.

We take dv = ex dx and u = x2. This time v = ex and du = 2x dx, so we get∫
x3ex dx = x3ex − 3x2ex + 6

∫
xex dx.

Finally, we do one last iteration of integration by parts. This time we let dv = ex dx
and u = x. Then v = ex and du = dx. So, we have∫

x3ex dx = x3ex − 3x2ex + 6xex − 6

∫
ex dx.

And we know this last integral is just ex + C. So,∫
x3ex dx = x3ex − 3x2ex + 6xex − 6ex + C.

Now we will do integration by parts of the second variety.

Example: Evaluate ∫
cos(x)ex dx.

We begin by setting dv = ex dx and u = cos(x). Then v = ex and du = − sin(x) dx.
So, ∫

cos(x)ex dx = cos(x)ex +

∫
sin(x)ex dx.

This time we let dv = ex dx and u = sin(x). Then v = ex and du = cos(x) dx. So,∫
cos(x)ex dx = cos(x)ex + sin(x)ex −

∫
cos(x)ex dx.

Adding the integral to both sides gives us

2

∫
cos(x)ex dx = cos(x)ex + sin(x)ex,

and dividing by two and adding on a +C gives us our final answer of∫
cos(x)ex dx =

cos(x)ex + sin(x)ex

2
+ C.
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Finally, we work through an example of the third variety of integration by parts. You
should do this variety when you don’t know how to integrate any of the functions in an
integral, but when you do know how to differentiate them.

Example: Evaluate ∫
ln(x) dx.

We set dv = dx and u = ln(x). Then v = x and du = dx
x
. So,∫

ln(x) dx = x ln(x)−
∫

x

x
dx = x ln(x)−

∫
1 dx.

So, ∫
ln(x) dx = x ln(x)− x+ C.
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Practice Problems

These practice problems are similar to the worked examples, but are separate from their
solutions. They should be used to make sure that you are confident with the material, and
are of approximately the same level of difficulty as exam questions.

1. Evaluate ∫
(ln(x))100

x
dx

2. Find the derivative of
x log10(x)

3. Find the value of
lim
x→0+

x2 log3(x)

4. Evaluate ∫
2x · 15x2

dx

5. Evaluate ∫
x

x2 + 1
dx

6. Evaluate ∫
sec2(x)

5 + tan(x)
dx

7. Find the value of
lim
x→0+

x3 + (0.5)
1
x

8. Evaluate ∫
x5 ln(x) dx

9. Evaluate the following integral using trigonometric substitution∫
x√

x2 + 1
dx

10. Evaluate ∫ π
4

0

sin3(θ)
√

cos(θ) dθ
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Practice Problem Solutions

1. Evaluate ∫
(ln(x))100

x
dx

Solution: We will use u-substitution. Let u = ln(x). Then du = 1
x
dx. So,∫

(ln(x))100

x
dx =

∫
u100 du =

u101

101
+ C.

Then, we substitute back in to x, which gives us the final answer:∫
(ln(x))100

x
dx =

(ln(x))101

101
+ C.

2. Find the derivative of
x log10(x)

Solution: We begin by using the product rule

(x log10(x))
′ = (x)′ log10(x) + x(log10(x))

′.

And then we recall that x′ = 1, and that the derivative of log10(x) is
1

x ln(10)
. So,

after simplifying, we have that

(x log10(x))
′ = log10(x) +

1

ln(10)

3. Find the value of
lim
x→0+

x2 log3(x)

Solution: We will use L’Hopital’s rule. Specifically, we will write

x2 log3(x) =
log3(x)

1
x2

.

So, by L’Hopital’s rule,

lim
x→0+

x2 log3(x) = lim
x→0+

1
ln(3)x

−2 1
x3

.

Simplification gives us that this is
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lim
x→0+

− 1

2 ln(3)

1

x2

And we know that 1
x2 goes to infinity as x goes to 0 from the left. So, not

forgetting the negative sign, we have that

lim
x→0+

x2 log3(x) = −∞.

4. Evaluate ∫
2x · 15x2

dx

Solution: We begin by setting u = x2. Then du = 2x dx. So,∫
2x · 15x2

dx =

∫
15u du.

And we know how to evaluate such an integral. So,∫
2x · 15x2

dx =
15u

ln(15)
+ C

Or, after switching back to x,∫
2x · 15x2

dx =
15x

2

ln(15)
+ C

5. Evaluate ∫
x

x2 + 1
dx

Solution: We begin by setting u = x2 + 1. Then 1
2
du = x dx. So,∫

x

x2 + 1
dx =

∫
1

u
du

And we know how to evaluate this integral. So,∫
x

x2 + 1
dx = ln |u|+ C = ln |x2 + 1|+ C

And since x2 + 1 is always positive, this is just∫
x

x2 + 1
dx = ln(x2 + 1) + C
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6. Evaluate ∫
sec2(x)

5 + tan(x)
dx

Solution: Set u = 5 + tan(x). Then du = sec2(x) dx. So,∫
sec2(x)

5 + tan(x)
dx =

∫
1

u
du.

And we know how to evaluate this. So,∫
sec2(x)

5 + tan(x)
dx = ln |u|+ C,

or, ∫
sec2(x)

5 + tan(x)
dx = ln |5 + tan(x)|+ C.

7. Find the value of
lim
x→0+

x3 + (0.5)
1
x

Solution: We split this into two limits.

lim
x→0+

x3 + 2
1
x = lim

x→0+
x3 + lim

x→0+
(0.5)

1
x .

We can plug x = 0 directly in for the first of these limits. For the second, we
need to notice that as x goes to 0 from the left, we have that 1

x
goes to infinity.

So,
lim
x→0+

x3 + 2
1
x = 0 + lim

t→∞
(0.5)t

And this exponential limit goes to zero, since 0.5 < 1. So,

lim
x→0+

x3 + 2
1
x = 0 + 0 = 0.

8. Evaluate ∫
x5 ln(x) dx
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Solution: We solve the integral ∫
x5 ln(x) dx

using integration by parts. We let u = ln(x) and dv = x5 dx. Then du = dx
x
and

v = x6

6
. So, ∫

x5 ln(x) =
x6

6
ln(x)−

∫
x6

6x
dx,

which we can rewrite as∫
x5 ln(x) =

x6

6
ln(x)−

∫
x5

6
dx =

x6

6
ln(x)− x6

36
+ C.

9. Evaluate the following integral using trigonometric substitution∫
x√

x2 + 1
dx

Solution: One may evaluate this integral by a simple u-substitution. But, since
we are asked to use a trigonometric substitution, we must do it that way.
Since we see a 1 + x2, we will set x = tan(θ). This makes dx = sec2(θ) dθ. At
this point, we will draw out our triangle:

1

√
1 + x2

x

θ

Then, we have that∫
x√

1 + x2
dx =

∫
tan(θ)√

1 + tan2(θ)
sec2(θ) dθ.

And since 1 + tan2(θ) = sec2(θ), we have that this is just∫
tan(θ)√
sec2(θ)

sec2(θ) =

∫
tan(θ) sec(θ) dθ.

And since sec′(θ) = sec(θ) tan(θ), we have that∫
tan(θ) sec(θ) dθ = sec(θ) + C.
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Then, going back to our triangle, we see that in terms of x we have∫
x√

1 + x2
dx =

√
1 + x2 + C.

Indeed, we may verify that this is the case through the u-substitution. This
step is optional, but we will include it here for completeness. We note that if
u = 1 + x2, then du = 2x dx. This would give us

1

2

∫
1√
u
du =

1

2
2
√
u+ C.

Plugging back in our definition of u gives us that∫
x√

1 + x2
dx =

√
1 + x2 + C.

just like in our trigonometric substitution.

10. Evaluate ∫ π
4

0

sin3(θ)
√

cos(θ) dθ

Solution: The first thing that we need to do in order to evaluate this integral
is to note that cos(θ) will be hard to get out of the square root. So, we want to
make u = cos(θ). This means that du = − sin(θ). So, we want to pull aside one
copy of sin(θ) and change the rest to cos(θ) using cos2(θ) + sin2(θ) = 1.
Putting this plan into action gives us∫ π

4

0

sin3(θ)
√
cos(θ) dθ =

∫ π
4

0

(1−cos2(θ))
√
cos(θ) sin(θ) dθ = −

∫ θ=π
4

θ=0

(1−u2)
√
u du

We now want to change our bounds. If θ = 0, we have that u = 1. If θ = π
4
,

then u =
√
2
2
. So,

−
∫ θ=π

4

θ=0

(1− u2)
√
u du = −

∫ √
2

2

1

(1− u2)
√
u du =

∫ 1

√
2
2

(1− u2)
√
u du.

Finally, we distribute the
√
u and solve the integral by noting that

√
u = u

1
2 .

This gives us∫ 1

√
2

2

(1− u2)
√
u du =

∫ 1

√
2

2

u
1
2 − u

5
2 du =

(
2

3

√
u3 − 7

2

√
u7

)1

√
2

2
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And plugging in values gives us that∫ π
4

0

sin3(θ)
√

cos(θ) dθ =
16− 11 4

√
2

42
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Unsolved Questions

Here is a list of 16 unsolved questions which I believe are of similar difficulty to what might
be asked of you on an exam. They are grouped by type of problem, so if you feel like you
don’t know how to do one specific type of problem, you should do all of the problems of that
type for practice.

1. If f(x) = x3 + x− 2, find (f−1)′(0).

2. If f(x) = x+ sin(x), find (f−1)′(π).

3. Evaluate lim
x→∞

ln(x)

4. Evaluate lim
x→∞

ln(x)− ln(x+ 1)

5. Evaluate lim
x→∞

log0.5(x) + tan−1(x)

6. Evaluate lim
x→∞

3 tanh(x) + e−x

7. Evaluate lim
x→∞

x6e−x

8. Evaluate lim
x→∞

x2(0.9999)−x

9. Evaluate lim
x→0+

3x3 ln(x)

10. Evaluate lim
x→0+

ln(x)

x

11. Evaluate ∫
tan−1(x) dx

12. Evaluate ∫
sin−1(x) dx

13. Evaluate ∫
x3 cos(x) dx

14. Evaluate ∫
cos(x)ex dx

15. Evaluate ∫
tan(x)− sin2(x) dx

16. Evaluate ∫
sin3(x)
3
√

cos(x)
dx
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